Chào mừng đến với website CÔNG TY CỔ PHẦN LILAMA 18.1
CÔNG TY CỔ PHẦN LILAMA 18.1
LILAMA 18.1 JOINT STOCK COMPANY

Pin Mặt Trời Peropkit Tương Lai Của Tương Lai

Pin mặt trời là tương lai của ngành năng lượng, peropkit là tương lai của pin mặt trời. Peropkit được Tạp chí "Science" xếp vào 10 đột phá hàng đầu trong năm 2013 do có triển vọng tuyệt vời trong lĩnh vực chế tạo các tấm pin mặt trời.

Pin mặt trời là tương lai của ngành năng lượng, peropkit là tương lai của pin mặt trời. Peropkit được Tạp chí "Science" xếp vào 10 đột phá hàng đầu trong năm 2013 do có triển vọng tuyệt vời trong lĩnh vực chế tạo các tấm pin mặt trời.

Pin mặt trời

Pin mặt trời tạo ra điện nhờ hiệu ứng quang điện. Hiệu ứng này được nhà vật lý người Pháp Alexander Edmond Becquerel (con trai của nhà vật lý Antoine Cesar Becquerel và cha của nhà vật lý Antoine Henri Becquerel - người đã nhận giải thưởng Nobel và phát hiện ra phóng xạ) phát hiện lần đầu tiên vào năm 1839.

Theo ngôn ngữ của vật lý chất rắn, pin mặt trời được tạo ra trên cơ sở chuyển đổi dạng p-n trong tinh thể silic. Sự chuyển đổi này được tạo ra bằng cách thêm một lượng nhỏ các khuyết tật khác nhau vào các khu vực khác nhau của mạng tinh thể. Giao diện giữa các khu vực này sẽ tạo ra sự chuyển đổi.

Cấu trúc của peropkit: A- canxi; B- titan; C- ôxy.

Hiệu suất PV được định nghĩa là lượng điện nhận được chia cho năng lượng của ánh sáng trên một PV. Một phần đáng kể của năng lượng ánh sáng sẽ bị mất đi. Vì vậy, hiệu suất của PV không thể đạt tới 100%. Khoảng cách dải của pin mặt trời silicon là 1,1 eV. Theo sơ đồ của phổ điện từ, phổ nhìn thấy được nằm trong vùng cao hơn một chút, do đó, bất kỳ ánh sáng nhìn thấy được nào cũng sẽ cung cấp cho chúng ta điện. Nhưng điều này cũng có nghĩa là một phần năng lượng của mỗi photon bị hấp thụ sẽ bị mất đi và chuyển thành nhiệt.

Kết quả là, ngay cả với một tấm pin mặt trời lý tưởng được sản xuất trong điều kiện hoàn hảo, hiệu suất tối đa theo lý thuyết sẽ là khoảng 33%. Đối với các tấm PV có sẵn trên thị trường, hiệu suất thường ~20%.

Khoáng vật peropkit

Peropkit có công thức hóa học là CaTiO3 (titanat canxi) - một khoáng vật tương đối hiếm trên trái đất. Các tinh thể của peropkit có hình khối lập phương. Các tinh thể thường được gắn dọc theo các mặt của hình khối. Tùy thuộc vào các tạp chất, peropkit có màu khác nhau (đen xám, đen, nâu đỏ, đỏ lục bình, đỏ cam và vàng mật ong), có độ cứng 5,5÷6, mật độ: 3,97÷4,0 g/cm3. Trong thành phần của peropkit, nguyên tố canxi (Ca) có thể được thay thế bằng xeri (Ce), nguyên tố titan (Ti) - bằng niobi (Nb) và tantan (Ta), và có thể có các tạp chất khác, dẫn đến sự hình thành các khoáng vật cùng họ khác là papillit, disanalit và loparit.

Các tế bào quang điện peropkit dựa trên thiếc.

Peropkit được Gustav Rosa phát hiện vào năm 1839 tại dãy núi Ural và được ông đặt tên để vinh danh một chính khách Nga là Bá tước L. A. Peropsky - một người sưu tầm khoáng vật. Khoáng vật peropkit có thể được tìm thấy ở bất kỳ lục địa nào trên Trái đất và trong các đám mây của ít nhất một ngoại hành tinh. Những vật liệu tổng hợp có cấu trúc tinh thể và có cấu trúc hóa học tương tự như peropkit tự nhiên cũng được gọi là peropkit.

Peropkit được tìm thấy chủ yếu trong đá phiến talc và chlorite; ở dạng vi cấu trúc trong đá có nguồn gốc núi lửa (đá bazan melilit, dung nham bazan). Các mỏ peropkit được phát hiện ở Urals (Nga), ở Tyrol (Áo), ở Thụy Sĩ, ở Phần Lan.

Peropkit là một khoáng vật gốc của titan, niobi và một số nguyên tố khác. Peropkit cũng rất nổi tiếng về cấu trúc tinh thể của nó. Các nguyên tử titan trong peropkit được đặt tại vị trí của một mạng tinh thể bị biến dạng yếu.

Công nghệ sản xuất PV peropkit của Toshiba

Trong số các hợp chất có cấu trúc của peropkit thường gặp là các oxit, các halogen, hợp chất intermetallic. Các vật liệu có các tính chất siêu dẫn nhiệt độ cao, chất dẫn ion, cũng như nhiều vật liệu từ tính và dẫn điện đều có cấu trúc của peropkit (hoặc của các hợp chất của peropkit).

Các kết quả nghiên cứu về peropkit

 Các nghiên cứu đã cho thấy, hợp chất của peropkit với một số kim loại kiềm cho phép tạo ra các tế bào quang điện có hiệu suất tới 22%. Tiềm năng về hiệu suất của các tế bào quang điện dựa trên cơ sở các hợp chất của peropkit được xác định tới 31%.

Việc ứng dụng peropkit trên thực tế không hề đơn giản. Ngay khi được phủ lên lớp màng mỏng, peropkit sẽ tinh thể hóa rất nhanh và gây khó khăn cho việc tạo ra một lớp nguyên tố đồng đều trên một diện tích rộng

Bí mật lớn nhất về tính hấp dẫn của peropkit đã được phát hiện là khả năng phát triển các tinh thể có kích thước đến mili mét trên một màng mỏng một cách nhanh chóng và dễ dàng mà không có các khuyết tật. Đây là kích thước tinh thể được coi là lớn và lý tưởng để chế tạo ra các tấm pin mặt trời. Các tinh thể peropkit cho phép các điện tử chuyển động theo tinh thể mà không bị nhiễu.

Các nghiên cứu về peropkit hiện nay đều nhắm tới mục đích tăng hiệu suất chuyển hóa năng lượng bằng cách loại bỏ các khuyết tật trong cấu trúc của mạng tinh thể. Mục tiêu cuối cùng là tạo ra cả một lớp nguyên tố có mạng tinh thể lý tưởng.

Việc chế tạo PV trên cơ sở peropkit đơn giản hơn so với sử dụng silic, nhưng peropkit lại có tốc độ phân rã nhanh hơn. Các nhà nghiên cứu đang tập trung giải quyết vấn đề phân rã này. Một nghiên cứu chung của Trung Quốc và Thụy Sỹ đã đưa ra được một phương pháp mới để tạo ra một tế bào quang điện từ peropkit, loại bỏ được sự cần thiết phải di chuyển các lỗ. Tế bào này là một lớp có tính dẫn bằng lỗ xuống cấp, nên vật liệu ổn định hơn nhiều.

PV peropkit do Toshiba chế tạo có diện tích 703 cm2, và đạt hiệu suất 12%.

Phòng thí nghiệm của Berkeley đã cho hay, tế bào quang điện peropkit khi đạt được hiệu suất lý thuyết là 31% vẫn có thể có giá thành rẻ hơn so với silic. Các nhà nghiên cứu đã đo độ quang dẫn và hiệu suất chuyển đổi của các bề mặt của các hạt khác nhau bằng kính hiển vi nguyên tử. Họ đã phát hiện ra rằng, các bề mặt khác nhau có hiệu suất rất khác nhau. Điều này có nghĩa là sẽ chế tạo ra được các tế bào quang điện có hiệu suất tới 31% để làm nên cuộc cách mạng mới trong lĩnh vực điện mặt trời.

Các nhà nghiên cứu của Toshiba đã chia các phần cần thiết để tạo ra PV peropkit thành các lớp là dung dịch chì iodua - PbI₂, và methyl ammonium hydroiodide - MAI. Nhờ vậy, người ta đã điều chỉnh được tốc độ tăng trưởng của tinh thể trên màng mỏng, và đã tạo ra được ra một lớp phẳng, mỏng có diện tích lớn.

Triển vọng ứng dụng của ​peropkit

Mặc dù còn quá sớm để nói về các chỉ số kinh tế cụ thể của việc sử dụng peropkit, vì việc sử dụng rộng rãi vật liệu này trong các tấm pin mặt trời được dự đoán sau năm 2025, khoáng vật peropkit vẫn được coi là có đủ các điều kiện tiên quyết để thay thế silic trong một tương lai không xa.

Lý do quan trọng, để sản xuất pin mặt trời silic thịnh hành, việc xử lý vật liệu ở nhiệt độ hơn 1400 độ cần phải có thiết bị tinh vi. Trong khi đó, peropkit có thể được kiểm soát trong dung dịch lỏng ở nhiệt độ 100 độ bằng thiết bị đơn giản.

Có hai ưu điểm khác của tế bào quang điện peropkit - tính linh hoạt và độ trong suốt. Nhờ đó, các PV peropkit có thể được lắp đặt ở nhiều nơi khác nhau: trên tường, trên nóc xe cộ, tòa nhà, trên cửa sổ và thậm chí trên quần áo.

Bằng cách điều chỉnh độ dày của lớp peropkit, ta có thể kiểm soát được độ trong suốt của PV peropkit để lắp đặt chúng cho nhiều mục đích khác nhau. Theo hướng này, các thí nghiệm xác định tỷ lệ ánh sáng hợp lý để cung cấp cho thực vật và để chuyển đổi thành điện năng đã được tiến hành ở Nhật Bản.

Một lĩnh vực ứng dụng khả thi khác là lắp các PV peropkit cho các ô tô chạy điện. Mặc dù chúng ta đang ở giai đoạn đầu của con đường này, nhưng đã có những thành tựu đầu tiên. Các nhà khoa học của Viện Western Reserve thuộc Đại học Cayes (Ohio, Hoa Kỳ) đã thử nghiệm sử dụng PV dựa trên peropkit để sạc lại pin cho xe điện. Họ đã kết nối 4 PV dựa trên peropkit với pin lithium.

Các kết quả nghiên cứu ở Nga còn cho thấy, vật liệu peropkit có thể là một nguồn phát tốt và phù hợp để tạo ra ánh sáng. Các nhà khoa học của Viện Thép và Hợp kim Matxcơva (MISiS) và Đại học Công nghệ Thông tin, Cơ học và Quang học St. Petersburg đã phát triển một PV peropkit có thể hoạt động đồng thời như pin và đèn LED.

Trong tương lai, các nhà khoa học có thể phát triển các màng thủy tinh có 2 tính năng: tạo ra năng lượng vào ban ngày và phát ra ánh sáng vào ban đêm. Trong trường hợp này, để giữ được độ trong suốt của kính, độ dày màng thủy tinh tối đa không vượt quá 3 micron.

Ngoài ra, các halogen polimer tổ hợp của bismuth và antimon được các nhà khoa học của Viện Hóa học vô cơ mang tên A.V. Nikolaev, Viện Vật lý hóa học (thuộc Viện Hàn lâm Khoa học Nga) nghiên cứu và phát triển có thể trở thành nguyên lý chung cho việc chế tạo các chất bán dẫn trong tương lai.

Anh chị xem thêm thông tin tại đây

Nguồn Tạp Trí Năng Lượng Việt Nam